SPAD-tacular: Using the Future Inquiry Workshop to develop industry-level strategy on a wicked problem in Australia and New Zealand

Verna Blewetta, Anjum Naweeda, Lily Hirscha

aAppleton Institute, Central Queensland University, Adelaide, South Australia, AUSTRALIA

1. Introduction

A Signal Passed at Danger (SPAD) is a situation where a train exceeds its limits of authority, essentially by running through a red signal. In this respect, it is rather like a car going through a red light, but involves much greater distances and collision potential. Such events are a high-risk system failure that can have disastrous consequences for life and property. Thus, they are a major safety problem for both passenger and freight rail services. SPADs are cause by a combination of technical and non-technical factors within the system, and a solution is often intractable because the causes are complex and there is considerable conflict between system actors; for this reason, SPADs constitute a ‘wicked problem’, (Rittel and Webber 1973). This paper describes part of a larger research project aimed at identifying and mitigating SPAD-risk factors in Australia and New Zealand (Naweed and Rainbird 2014). In particular, we focus on the use at industry level of an innovative, large-group process, the Future Inquiry Workshop (FIW).

2. Method

The FIW (Blewett and Shaw 2008) is a large group process that drives diverse participants, who represent ‘the whole system in the room’, to seek common ground and identify strategies for action that lead to a commonly desired future. The theoretical underpinnings of FIW are appreciative inquiry (Whitney and Cooperrider 1998) and the future search conference (Weisbord and Janoff 2000, Weisbord and Janoff 2010). Both of these modalities are in turn grounded in the work of early theorists on leadership, socio-technical systems, group dynamics, and group development. The process is tightly directed within a one-day timeframe. It is designed to use the conflict in the room, rather than ignore it, to achieve positive outcomes. This was an important feature for the application of the process that we discuss here, as the Australasian rail industry is characterised by conflict and huge differentials in positional power between the players in the system.

An international, industry-level FIW was undertaken, and took place after a series of four local-level FIWs conducted in NZ and three Australian States. The FIW took the participants on a path that enabled them to examine the past and present with respect to the causes and mitigation of SPADs, to consider an agreed, desirable future, and finally to determine the strategies that would enable the industry to move towards that future. The findings and lessons from the local-level FIWs were included in the industry-level FIW.

3. Results

There were 48 participants in the FIW, representing eight stakeholder groups: Users and maintainers of signals (n=7); Employee representatives (n=8); Controllers of signals (n=6); Builders and designers of signals, infrastructure and rail safety (n=5); Policy developers and designers (n=5); Policy influencers (n=4); Front line supervisors (n=7); and Industry representatives (n=6).

The FIW explored SPADs from a systems perspective and drew on accounts of train drivers’ experiences to complement this. During the process, participants examined the past and present nature of the problem, sought their common ground, and developed pragmatic options for the future. The process enabled those with less positional power to communicate their views effectively to those with greater power; that is, power differentials were accommodated within the format of the process.

The key issues that resulted from the workshop came under the broad headings: technology; inconsistencies in investigation; data and information; training; industry collaboration and human factors. The whole group developed these into agreed “Proposition Statements”, which represent common ground that
stakeholders were prepared to work together to achieve. That is, there is energy amongst the stakeholders for working towards improvement in these areas that will have an impact on reducing SPAD risk in the Australasian rail industry.

4. Discussion

The conditions for success of a FIW include careful planning of place, content and people. The right place means having healthy food, a room with natural daylight and ample space to accommodate all participants comfortably. The right content means setting a boundary around the discussion at the outset to ensure that the focus is maintained throughout the day. The right people means having representation of all stakeholders in the system in question.

The FIW process is a fast-track way of bringing people with diverse and/or conflictual views to points of agreement. It is also a process that allows the effective management of power differentials amongst participants, thus providing opportunities for participants not only to be heard, but also to listen and understand the views of others. This is so even when the disagreement is potent. By focussing attention on the areas of common ground, mutual trust is established between players even where those relationships have traditionally been very difficult. Whilst no single, one-day workshop can repair long-held enmity and distrust, this process shows participants the essential humanity in others in the room and demonstrates that common ground exists. By working together on the areas of common ground, participants practice respectful conversations and learn a new way of communicating and assessing areas of difference.

All this said, a FIW is not the panacea of all ills. A one-day event may provide a line in the sand for changes in a group, but it cannot provide huge leaps, massive behavioural change, or vast policy changes. But even the longest journey starts with the first step, and a FIW provides the process for the group to determine the first do-able steps in the goal to reach a desired and an eminently possible future.

Acknowledgements

The authors are grateful to the CRC for Rail Innovation (established and supported under the Australian Government’s Cooperative Research Centres program) for funding this research; this paper reports results from Project No. R2.116 ‘Managing and mitigating SPAD risk.’

References

