This paper will focus on modeling and simulating human performance on ship operations related to human task execution times, including variance in human performance and impact of potential task performance confounders (i.e. performance modifiers) and human reliability. Such efforts aim to assure meeting critical response times by developing and validating the rationale for human variability modeling. The concept of Ideal human observer introduced by Krebs(2013) will be expanded and applied to simulate the time sequence of task generation and task completion in terms of Communication sequence, Transit sequence, and Execution sequence. A system of categorization that maps both to the shipboard tasks and to the subject literature on distributions of execution times will be developed for this purpose. The task categorization scheme will be based on taxonomy of human tasks with three main classes of human performance, including: skill-based, rule-based, and knowledge-based tasks that differ in the level of their complexity as reflected by the nature of information being processed and physical components of the task as well as human reliability and resilience. This paper will support evaluating the criticality of the human tasks, and help explore design alternatives that may lessen the operational risks, and elaborate on the boundaries to better characterize future ship design methodologies.

Dr. Waldemar Karwowski

Waldemar Karwowski, Ph.D., D.Sc., P.E. currently serves as Professor and Chairman, Department of Industrial Engineering and Management Systems, and Executive Director of the Institute for Advanced Systems Engineering at the University of Central Florida, USA. He holds an M.S. (1978) in Production Engineering and Management from the Technical University of Wroclaw, Poland, and a Ph.D. (1982) in Industrial Engineering from Texas Tech University. He was awarded D.Sc. degree in management science by the State Institute for Organization and Management in Industry, Poland (2004). He also received Honorary Doctorate degrees from three European universities. Dr. Karwowski was named the J. B. Speed School of Engineering Alumni Scholar for Research, University of Louisville (2004–2006). Dr. Karwowski currently serves on the Board on Human-Systems Integration, National Research Council of the National Academies, USA (2007–2011). He is an Editor of the Human Factors and Ergonomics in Manufacturing journal (John Wiley & Sons, New York), and Editor-in-Chief of Theoretical Issues in Ergonomics Science journal (Taylor & Francis Ltd, London). He is the author or coauthor of over 400 scientific publications in the area of human factors, human-system integration, soft computing, and industrial engineering,
His research has been funded in the past by NIOSH, NSF, ONR, USPS as well as industry, including Toyota, General Motors and IBM.

Dr. Tareq Ahram

Tareq Ahram, PhD, is the lead researcher working at the Institute for Advanced Systems Engineering (IASE) at the University of Central Florida. He holds a Master of Science degree in Human Engineering from the University of Central Florida, Master of Science degree in Engineering Management (2004) and Ph.D. (2008) in Industrial Engineering from the University of Central Florida with specialization in Human Systems Integration and large-scale information retrieval systems optimization (search algorithms). Dr. Ahram has served as an invited speaker at several Systems Engineering and HSI research meetings and workshops and served as program committee member and special speaker at the Department of Defense Human Systems Integration and Human Factors Engineering Technical Advisory Group- meeting 62, 63, and 64 held at NASA Ames - Human Systems Integration Division (DOD TAG).